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Feynman path-integral representation for scalar-wave propagation
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We propose a Feynman path-integral solution for wave propagation in an inhomogeneous medium.

PACS number(s): 03.40.Kf

One of the long-standing unsolved problems in wave
physics going back to Fresnel and Helmholtz is to find a
general Feynman path integral for the scalar-wave equa-
tion in an inhomogeneous medium ([1], Chap. 20). In
this Rapid Communication we propose a formal solution
for the above-mentioned problem by writing a v-
dimensional space-time Feynman path-integral represen-
tation for the scalar-wave equation in a spatially variable
inhomogeneous medium described by a refraction index
m(x) (xER" 7).

Let us start our analysis by considering the corre-

sponding Green function for an external point source
2
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In order to write a space-time Feynman path-integral
representation for the Green function Eq. (1) we follow
Feynman by using the fifth-parameter technique by intro-
ducing a related Schrodinger wave equation with an ini-
tial point-source condition
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At this point we remark the following identity between
the Schroédinger wave equation (2) and the scalar-wave
Green function Eq. (1):
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In order to write a path integral for the associated
Schrddinger equation (2) we consider the solution in the
operator-matrix form (the Feynman-Dirac propagator)
(1].
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where L denotes the D’Alembert wave operator for
m(x). Asin quantum mechanics we write the propagator
Eq. (4) as an infinite product of short-time .S propagations
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The standard short-time expansion in the S parameter for the D’Alembert wave operator is given by ([2], Chap. 10)
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If we substitute Eq. (6) into Eq. (5) and take the Feynman limit of N — o, we will obtain the following weighted
path-integral representation after evaluating the (p;,w;) Gaussian integrals of the representation Eq. (6) for the right-

hand side of Eq. (5):
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where #(0) and r(o) are the Feynman-Brownian space-time ray trajectories connecting the initial and final space-time

points (x,¢) and (y,?’).

It is instructive to remark that the ¢(o ) Feynman path integral is exactly soluble [1]. As a consequence we finally ob-
tain our proposed space-time path-integral representation for Eq. (1)
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For the simplest case of a constant refraction index m?(x)=1/C3 the Feynman path integral Eq. (8) is exactly solved
and yields as a result the usual Lienard-Weichert potential after introducing the retarded causality condition
(x—yP>cd(t —t')=G((x,1),(y,t"))=0.

We point out the usefulness of Eq. (8) to obtain explicit formulas for wave propagation in a random medium [2,3],
since the {m%(x)} random variable appears explicitly in the proposed formulas, Eq. (8). For instance, the averaged
Green function Eq. (1) for a random medium with Gaussian statistics ([1], Chap. 28)

(m(x;)m¥(x,))=K(|x;,—x,|) )

will lead us to consider the following polaronlike Feynman path integral as an effective expression for the above-cited
averaged Green function ([1], Chap. 21):
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which was obtained after using the approximation for the Feynman-Brownian ray path measure
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Let us point out that the approximation Eq. (11) is exact for |x—y| much larger than the length scale of the medium
randomness [2,3].

Work on scalar-wave propagation in a spatially turbulent medium [3] in this Feynman path-integral approach will be
reported elsewhere.
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